
Seaglider Science Controller

Integrative Observational Platforms Group
Applied Physics Laboratory
University of Washington

Revised: June 2024

Contents

1 Introduction 3

2 Hardware and wiring 4

3 Configuration 7
3.1 scicon.ins . 7

3.1.1 example . 7
3.1.2 syntax . 8

3.1.2.1 format statements . 9
3.1.2.2 columns . 10
3.1.2.3 string commands . 10

3.2 scicon.att . 11
3.2.1 example . 11
3.2.2 syntax . 11

3.2.2.1 expressions . 12
3.3 scicon.sch . 13

3.3.1 example . 13
3.3.2 syntax . 14

3.4 Parameters . 15

4 Glider menu controls 16
4.0.1 action numbers . 17

5 Selftest results 19

6 File formats and basestation handling 20
6.0.1 .dat example . 20
6.0.2 .eng example . 21

7 Firmware commands 23

2

Chapter 1

Introduction

This document is an introduction to the use of the Seaglider science controller (scicon).
Scicon is an electronic and software subsystem on Seaglider vehicles that allows for inde-
pendent (of Seaglider flight operations), asynchronous sampling and onboard processing of
science sensors. This guide assumes that the user is familiar with general glider piloting,
basestation and software menu operations.

In the Seaglider software architecture, scicon is an autonomous logger (as opposed to a
sensor). This means that the Seaglider provides power and the flight software communicates
with scicon via a series of action messages at specific points of flight operations (dive start,
apogee reached, dive finished, pre-Iridium call, post-Iridium call, depth changed, etc.), but
otherwise the logger device operates independently of the glider flight control. During flight,
scicon samples sensors according to its own configuration files (the glider science file has
no effect on scicon operations). When the dive is complete, the glider queries scicon for all
data collected during the dive and then passes those files to the basestation directly. Data
collected by scicon is not reported in the regular glider log and engineering files. Basestation
software is responsible for merging glider data and scicon data into the resultant netcdf
product.

3

Chapter 2

Hardware and wiring

Scicon consists of a small ARM-based single-board computer usually mounted on the VBD
cylinder in the aft of the vehicle. This arrangement provides the easiest wiring access to the
bulkhead connectors on the aft endcap for sensors mounted in or on the aft fairing.

Scicon provides connections for five serial sensors (four RS232, one logic level) and two
frequency output sensors (e.g., SBE CT, SBE 43). The logic level serial port and one
frequency channel are shared. The layout of channel connectors on the board is shown in
Fig. 2.1. Scicon is connected to the glider via the console serial port. To configure scicon on
the glider, configure a logger device using the param/config/logger menu option. Scicon is
usually connected to one of the standard glider serial ports USART2, USART4, USART5B
or 5C.

Generally, sensors are connected either to scicon or to the glider “truck” platform. If they
are connected to scicon, then sampling is done via scicon and control is via the scheme
file, scicon.sch (below). If connected to the glider directly then sampling is controlled via
the science file. With the latest generation of electronics, specifically the Rev E “combi”
tailboards, it is possible to have one serial sensor and one frequency sensor (e.g., the SBE
CT sail) electrically connected to both scicon and the glider truck. In this arrangement, the
configuration can be changed mid-mission. At any one time, only one platform (glider truck
or scicon) can be configured to sample a given sensor. Simultaneous access is not allowed.
On the glider the shared ports are the CT frequency port and the 5D serial port. An example
of typical aft endcap wiring is shown in Fig. 2.2.

It is possible, though not common, to have some sensors connected to the glider (to be
controlled via science file and reported in the engineering file) and some sensors connected
to scicon.

4

CHAPTER 2. HARDWARE AND WIRING

Figure 2.1: Science controller board layout with connector numbering and channel labels.

5

CHAPTER 2. HARDWARE AND WIRING

customer_aft_endcap_example

2024-03-08 A.4*

Tail_Temp_J8

MTA100-04 4-pin

1

2

3

4

W_Temp

4x 24 AWG 14.0 in

Tail_Temp_J8:11:BK SBECT_Temp_JP1:1

Tail_Temp_J8:22:OG SBECT_Temp_JP1:2

Tail_Temp_J8:33:BU SBECT_Temp_JP1:3

Tail_Temp_J8:44:RD SBECT_Temp_JP1:4

installed only with SBE-CT sail

Tail_Cond_J9

MTA100-04 4-pin

1

2

3

4

W_Cond

4x 24 AWG 11.0 in

Tail_Cond_J9:11:BK SBECT_Cond_JP1:1

Tail_Cond_J9:22:OG SBECT_Cond_JP1:2

Tail_Cond_J9:33:BU SBECT_Cond_JP1:3

Tail_Cond_J9:44:RD SBECT_Cond_JP1:4

installed only with SBE-CT sail

SBECT_Temp_JP1

MTA100-04 4-pin

1

2

3

4

SBECT_Cond_JP1

MTA100-04 4-pin

1

2

3

4

Tail_J22_SCCT

MTA100-04 4-pin

1

2

3

4

W_SCCT

4x 24 AWG 12.0 in

Tail_J22_SCCT:11:BK Scicon_J8:1:GND

Tail_J22_SCCT:22:WH Scicon_J8:2:FREQ1

Tail_J22_SCCT:33:YE Scicon_J8:4:FREQ2

Tail_J22_SCCT:44:RD Scicon_J8:6:PWR

installed only with SBE-CT sail

Scicon_J8

MTA100-06 6-pin

1 GND

2 FREQ1

3 GND

4 FREQ2

5 GND

6 PWR

Tail_J16_Ser5C

MTA100-04 4-pin

GND 1

TX 2

RX 3

PWR 4

5C typical, sometimes 5B

W_Scicon

4x 24 AWG 18.0 in

Tail_J16_Ser5C:1:GND1:BK Scicon_RevB_J3:2:GND

Tail_J16_Ser5C:2:TX 2:BU Scicon_RevB_J3:4:RX

Tail_J16_Ser5C:3:RX 3:WH Scicon_RevB_J3:3:TX

Tail_J16_Ser5C:4:PWR4:RD Scicon_RevB_J3:1:PWR

Scicon_RevB_J3

MTA100-06 6-pin

1 PWR

2 GND

3 TX

4 RX

5 DATA-

6 DATA+

Endcap_D

MCBH6F 6-pin

1

2

3

4

5

6

W_D

6x 24 AWG 12.0 in

Endcap_D:1 BK Scicon_J5:1:GND

Endcap_D:2 WH Scicon_J5:2:TX

RD

Endcap_D:4 GN Scicon_J5:4:PWR

Endcap_D:5 BU Scicon_J5:3:RX

BN

Scicon_J5

MTA100-05 5-pin

1 GND

2 TX

3 RX

4 PWR

5 GND

Endcap_C

MCBH6F 6-pin

1

2

3

4

5

6

W_C

6x 24 AWG 12.0 in

Endcap_C:1 BK Scicon_J4:1:GND

Endcap_C:2 WH Scicon_J4:2:TX

RD

Endcap_C:4 GN Scicon_J4:4:PWR

Endcap_C:5 BU Scicon_J4:3:RX

BN

Scicon_J4

MTA100-05 5-pin

1 GND

2 TX

3 RX

4 PWR

5 GND

Tail_J23_SC_5D

MTA100-04 4-pin

1

2

3

4

W_5D_share

4x 24 AWG 14.0 in

Tail_J23_SC_5D:11:BK Scicon_J7:1:GND

Tail_J23_SC_5D:22:WH Scicon_J7:2:TX

Tail_J23_SC_5D:33:VT Scicon_J7:3:RX

Tail_J23_SC_5D:44:RD Scicon_J7:4:PWR

Scicon_J7

MTA100-05 5-pin

1 GND

2 TX

3 RX

4 PWR

5 GND

Endcap_B

MCBH6F 6-pin

1

2

3

4

5

6

W_B

6x 24 AWG 12.0 in

Endcap_B:1 BK Tail_J21_Ser5D:1

Endcap_B:2WH Tail_J21_Ser5D:2

RD

Endcap_B:4 GN Tail_J21_Ser5D:4

Endcap_B:5 BU Tail_J21_Ser5D:3

BN

Tail_J21_Ser5D

MTA100-04 4-pin

1

2

3

4

Figure 2.2: Example wiring for an aft endcap with scicon installed. Bulkhead assignments,
tailboard USART assignments, and scicon channel assignments are somewhat arbitrary. Gen-
erally, wiring can be re-arranged as mission needs dictate.

6

Chapter 3

Configuration

Scicon operations are controlled by three configuration files: scicon.ins (describes instrument
definitions), scicon.att (how sensors are attached), and scicon.sch (sampling scheme for the
intervals, depth bins, dives and profiles of each attached sensor). Generally, scicon.ins and
scicon.att do not change over the course of a mission, but they can be changed if needed.

The scicon configuration files are automatic, that is, they are handled automatically by the
glider if they are present in the glider home directory on the basestation, similar to targets,
science, etc. If present during an Iridium communication session, the glider will download
the file to its own local file storage, and then after the call is complete will copy the files over
to scicon’s own filesystem. They are read by scicon at every power-up during the execution of
the script file startup.scr so any changed configurations will take effect at the next operation.

Comments in all three files are denoted with a # as the first character on a line. Inline
comments are not supported.

3.1 scicon.ins
The instrument properties file defines the classes of instruments that can be sampled, one
definition per instrument type. This class definitions contains information such as baud rate,
warmup times, timeouts, query strings, how data is parsed, and the types of data returned.

3.1.1 example

sbect = {
prefix = ct
cycles = 255
warmup = 700
timeout = 2000
column = condFreq(1000,0)
column = tempFreq(1000,0)

}

7

3.1. SCICON.INS CHAPTER 3. CONFIGURATION

legatoPoll = {
prefix = fb
baud = 19200
cycles = 0
timeout = 1000
warmup = 8000
skip = 0
terminator = 10
query = %F%n%3%F%n%[Ready:]fetch sleepafter=true%r%n
format = %d-%d-%d %d:%d:%f, %00, %01, %02, %03
meta = %F%n%1%F%n%[Ready:]getall%r%n%[Ready:]
start = %F%n%1%F%n%[Ready:]disable%r%n%[Ready:]
stop = %F%n%1%F%n%[Ready:]%9%9powerexternal used%r%n%[%n]
column = conduc(10000,0)
column = temp(10000,0)
column = pressure(1000,0)
column = conducTemp(10000,0)

}
aa4831 = {

prefix = aa
format = %s %d %00 %01 %02 %03 %04
baud = 9600
warmup = 1000
terminator = 10
timeout = 5000
skip = 0
column = O2(1000,0)
column = airsat(1000,0)
column = temp(1000,0)
column = calphase(1000,0)
column = tcphase(1000,0)
meta = %[4831]%n%$11%9get all%r%n%[Reference]%[%$23]

}

3.1.2 syntax

instrumentClass = {
prefix= two character prefix for file and directory names
driver= standard | ad2cp | json - specifies which parser to use for

handling data. standard is default and uses the format=
definition to parse data. ad2cp handles averaging and
decimation for Nortek AD2CP binary format. A single coeff=
must be specified in the instance to set the expected
record size (for example, (86 + 4x1xN_burst_cells)
+ (86 + 4x3xN_velocity_cells)).

8

CHAPTER 3. CONFIGURATION 3.1. SCICON.INS

baud= baud rate for serial communications (e.g., 19200)
cycles= number of cycles to measure for frequency channel
timeout= timeout in milliseconds
warmup= warmup time in milliseconds
status= status expression, evaluated and returned on "log sample"
skip= number of initial lines to skip after power-up before sampling
terminator= terminating character of data output line (decimal byte value)
query= query string to send for each sample (can be empty)
format= format string for parsing serial data returned
meta= command string to retrieve instrument metadata
start= command string start sampling
stop= command string to stop sampling
column= name(scale,offset)
column= name(scale,offset)
... additional columns
conf= configuration string to send before starting
conf= configuration string to send before starting
... additional configuration strings
post= RBR-TS | TS - apply post-stop function (e.g., bin averaging)

If TS is specified for T-S profiles derived from SBE CT
then 8 coeff= values (C_G...C_J, T_G...T_J) must be provided
in the instrument instance

comment= comment string
comment= comment string
... additional comment strings

}

prefix and one of baud or cycles are required. format and terminator are required
for serial instruments if using the standard driver (which is the default if not otherwise
specified). At least one column must be specified. All other values default to zero or empty.

3.1.2.1 format statements

For sensors that return data as a single line of ASCII serial text, the format= statement is
used to define how that line will be parsed into individual columns. It can be any string
consisting of regular text (that will be matched exactly) and the special characters:

%00, %01, %02, ... = read a number from the response as channel 0 (1, 2, ...)
%[n]00 = read n digits from the response as channel 0 (1, 2, ...)
%f = read and skip over a floating point number
%d = read and skip over an integer number
%s = read and skip over string data up to a white space

Columns can be parsed in any order in the format statement, i.e., they do not need to appear
in numerical order. If channel 00 is “temperature” and channel 01 is “salinity” based on the
order of column statements and the instrument output format is

9

3.1. SCICON.INS CHAPTER 3. CONFIGURATION

mm/dd/yyyy HH:MM:SS salinity voltage temperature

then the format might be one of

format=%s %s %01 %f %00
format=%d/%d/%d %d:%d:%f %01 %f %00

3.1.2.2 columns

There must be one column= statement in the definition for each datatype returned by the
instrument. If columns %00 ... %05 are referenced in the format statement then there must
be six column statements to define the name and packing information for those variables.

column = name(scale,offset) - scale and offset are applied for conversion
to long integers for the differenced tabular
ASCII data file representation

Columns must be listed in order (00, 01, 02...). The first column listed will define channel
00, the second channel 01, etc. Scale and offset values determine how scicon will pack the
parsed data into files for transmission. Data are sent as long integers. If the data from the
sensor is reported as integers then scale can be 1. Floating point values are generally scaled
up by the order of magnitude that preserves the appropriate number of decimal places when
the data is reconstructed on the basestation.

3.1.2.3 string commands

Commands that are sent to the instrument (start, query, meta, stop, conf) can contain inter-
polated text. Interpolated text are special strings, similar to print/printf format specifiers in
some programming languages, which are evaluated each time the string is constructed and
sent to the instrument.

%1 ... %9 = DelayMilliSecs(10) .. DelayMilliSecs(90)
%b = serial break
%r = CR (13)
%n = NL (10)
%e = esc (27)
%F = flush the receive queue
%$xx = send hex byte xx - must include both characters (00 - ff)
%[] = wait for an arbitrary sequence of characters. Characters between the

brackets can include any ASCII character. To wait for % use %%. To wait
for] use %]. Use %r and %n to wait for CR and NL, respectively.
Use %$xx to wait for an arbitrary hex byte. Several commands use the
string gathered while waiting for this sequence as output. For example,
the final captured output of the stop= command is reported on the finish
line of the data file trailer.

%(n) = wait for an arbitrary number of milliseconds (n = 1...99999)
%<> = interpret characters as a strftime specification for current time
%% = %

10

CHAPTER 3. CONFIGURATION 3.2. SCICON.ATT

3.2 scicon.att

The attach file defines the specific instruments that are currently configured and how they are
connected to scicon. There is one entry per instance of an instrument type, defining which
class of instrument (this must be a type defined in scicon.ins), which hardware channel it is
attached to, any instance specific configuration data (calibration coefficients for example),
and directives to average or decimate samples, and drop or derive new columns for files that
are telemetered. Raw data (all columns at the original sample rate) are always stored on
the scicon filesystem.

3.2.1 example

ct = {
type = legatoPoll
hwchan = 2

}
optode = {

type = aa4831
hwchan = 1

}
ad2cp = {

type = ad2cp
hwchan = 3
drop = attitude
avg = 4

}

3.2.2 syntax

instrumentInstance = {
type= instrumentClass
hwchan= hardware channel number (0-4 are serial channels, 5-6 are freq)
share= another instrumentInstance that serves as the "parent"

in lieu of hwchan when multiple classes (with different
format statements) come from the same physical hardware

avg= number of samples to average into telemetered file
dec= decimation factor (integer) for samples into telemered file
verbose= verbosity level for including raw data into telemetered file

bit 0: print raw line on short scan (default = off)
bit 1: include short scan diagnostics (default = on)
bit 2: always include raw data line (default = off)

drop= name of column to drop from telemetered file
drop= name of column to drop from telemetered file
... additional dropped columns
new= columnName(scale,offset):expression

11

3.2. SCICON.ATT CHAPTER 3. CONFIGURATION

new= columnName(scale,offset):expression
... additional derived columns
conf= configuration string to send before startup
conf= configuration string to send before startup
... additional configuration strings

configuration strings are cumulative. Strings specified
here in the instance are sent after strings specified
in the class.

coeff= calibration coefficient
coeff= calibration coefficient
... additional calibration coefficients. Different drivers may

use coeff values differently and expect specific numbers
of values and that they be specified in a strict order.

comment= comment string
comment= comment string
... additional comment strings
convert= columnName(slope,offset) - apply slope and offset to columnName
convert= columnName(slope,offset) - apply slope and offset to columnName
... additional conversions
binavg= bin size (meters) for bin averaged profile products

}

type= and hwchan= are required and are often the only properties provided in a typical
installation. Any class property (e.g., warmup, timeout) may also be specified to override
the value in a given instance.

3.2.2.1 expressions

Columns derived with new= must include the mathematical expression used to calculate the
derived value. Components of expressions are:

Variables referencing the latest data from any instrument:
instanceName.columnName

Operators:
standard operators: +,-,*,/,%,()
binary operators: <<,>>,|,&,~
logical operators: >,<,&&,||,==,!=,<=,>=,!
if-then-else operator: a ? b : c

Math functions:
sin, cos, tan, sinh, cosh, tanh
pow, exp, log, log10,
sqrt, hypot, ceil, fmod,
fabs

12

CHAPTER 3. CONFIGURATION 3.3. SCICON.SCH

Symbolic constants:
pi

oceanographic functions:
salinity(C, T, P) (psu)
potentemp(S, T, P, RefP) (degC)
soundspeed(S, T, P) (m/s)
density(C, T, P) (kg/m^3)
potendens(C, T, P, RefP) (kg/m^3)

C=mMho/cm, T=degC, P=dbar, S=psu

Other functions:
distance(lat0, lon0, lat1, lon1) (meters)
time() (RTC time since epoch)
epoch(yyyy, mm, dd, HH, MM, SS) (converts calendar time to epoch time)

For example, to reduce payload size, a CTD instrument could be configured to report den-
sity only, dropping the original temperature and salinity (conductivity) channels with the
following in the instance definitions in the attach file:

drop = temperature
drop = conductivity
new = density(1000,0):potendens(ct.conduc, ct.temp, ct.pressure, 0)

3.3 scicon.sch

The scheme file defines how each instrument is sampled. Sampling intervals can be controlled
as a function of depth bins, profile (dive, climb, loiter), and dive number. Per scheme
configuration information can also be specified (for example to change ADCP parameters
on dive and climb). An attached instrument can have multiple schemes defined. The active
scheme will be chosen in order of decreasing specificity of profile and dive definitions.

3.3.1 example

ct = {
50, 4.0
200, 7.5
1000, 14.0

}
optode = {

dive = 2
200, 5
500, 12
1000, 45

13

3.3. SCICON.SCH CHAPTER 3. CONFIGURATION

}
ad2cp = {

profile = a
conf = SETAVG,CH=124%r%n%[OK]
conf = SAVE,ALL%r%n[OK]
1000,15.000000

}
ad2cp = {

profile = b
conf = SETAVG,CH=234%r%n%[OK]
conf = SAVE,ALL%r%n[OK]
1000,15.000000

}

3.3.2 syntax

instrumentInstance = {
profile= which profile (a | b | c) this scheme applies to,

where a = dive, b = climb, c = loiter.
If unspecified this scheme becomes the default scheme
for this instance.

dive= dive modulo for applying this scheme. Default=1 (every).
conf= configuration string to send before startup
conf= configuration string to send before startup
... additional configuration strings

Configuration strings are cumulative, in addition
to and sent after strings specified in the class
and instance.

coeff= override coeff value during this scheme
coeff= override coeff value during this scheme
... additional coefficient values

Coefficient values specified here _replace_
values specified in the instance.

avg= Number of samples to average into telemetered file during this
scheme. Overrides any value given in the attach file.

dec= Decimation factor (integer) for samples into telemered file
during this scheme. Overrides any value in the attach file.

depth, rate deepest depth (meters) and sample rate (seconds)
depth, rate deepest depth (meters) and sample rate (seconds)
... additional sampling bins

}

At least one depth, rate pair must be specified. Other values are optional. A value of
zero for rate turns the instrument off in any bin. To turn an instrument completely off use
2000,0 or remove the instrument from the attach file.

14

CHAPTER 3. CONFIGURATION 3.4. PARAMETERS

Depth bins are specified as in the glider science file, in order of increasing depth. The
specified depth values indicate the bottom of the bin. The top of the bin is implied by the
depth of the preceding bin, with an implied zero at the beginning of the list. Sampling rates
for all instruments are independent of each other.

3.4 Parameters
In addition to the configuration files there are five glider-level control parameters to affect
the gross behavior of scicon. These are:

$LOGGERS Bitmask for global on/off control. Set bit number n corresponding to
the $LOGGERDEVICEn to turn scicon on (bit=1) or off (bit=0). If scicon
is in slot 1 ($LOGGERDEVICE1) include the value 1 in $LOGGERS to turn
scicon on. Remove 1 from $LOGGERS to turn scicon off.

$SC_PROFILE Bitmask controlling which profiles to run scicon. 1=dive, 2=climb,
4=loiter. Set to 3 for example to run during dive and climb, but not
during loiters.

$SC_XMITPROFILE Bitmask controlling which profiles to run transmit to basestation. 1=dive,
2=climb, 4=loiter. Usually matches $SC_PROFILE, but can be different
to conserve bandwidth, but collect data to be recovered with the glider.

$SC_RECORDABOVE Depth limit above which scicon will be run. Usually set to some depth
deeper than the deepest apogee depth, but can be shallower if all instru-
ments will be off below a certain depth to conserve additional power.

$SC_NDIVE Modulus controlling which dives to run scicon. Usually set to 1 to run
scicon every dive. A value of 2 will run scicon every other dive, 3 every
third dive, etc.

15

Chapter 4

Glider menu controls

With scicon configured on the glider, the hw/loggers/sc menu will be available. The fol-
lowing options (with optional arguments) are available:

------ SciCon ------
1 [on] Turn on controller
2 [off] Turn off controller
3 [selftest] Selftest
4 [sample] Report a sample
5 [readclk] Read controller clock
6 [syncclk] Synchronize controller clock to TT8
7 [command] Execute controller command

string="command string to send"
string="command string to send"
...

8 [get] Get file from from controller
name=filename to retrieve from scicon

9 [put] Put file onto controller
name=filename to send to scicon

10 [firmware] Put firmware onto controller
name=filename to send

11 [action] Execute logger action
action=number (see below)

12 [edit] Edit configuration
param=value
param=value
...

13 [config] Show configurable params
14 [direct] Direct comms

file=script
string="string to send"
string="string to send"

16

CHAPTER 4. GLIDER MENU CONTROLS

binary=0|1 (default 0)
addlf=0|1 (default 0)
stroke=0|1 (default 0)

15 [capture] Capture comms
file=script
string="string to send"
string="string to send"
seconds=timeout

16 [loader] Bootloader access
timeout=seconds

17 [stream] Stream sensor data
sensor=name

18 [ct] CT sensor data

These options can be used to verify basic scicon and sensor functionality after maintenance
or assembly. They are also helpful when developing and debugging new sensor integrations.
Note that the selftest option is not the same as the sequence of tests performed during the
autonomous pre-launch (whole glider) selftest. Use action action=16 to reproduce those
tests.

4.0.1 action numbers

The Seaglider operating software communicates with logger devices through a series of action
messages at various points of the operational cycles. For testing purposes, these messages
can be sent through the action menu option with the argument action=N where N is one
of the numbers from table 4.1

17

CHAPTER 4. GLIDER MENU CONTROLS

phase number notes
OFF 1 sent to force off
DIVE_START 2
APOGEE_REACHED 3
DIVE_FINISHED 4
SYNC_CLOCK 5 clock synced after GPS1
SYNC_PPS 6 clock synced to PPS after GPS 1
SYNC_2_CLOCK 7 clock synced after GPS2
SYNC_2_PPS 8 clock synced after GPS2
XMIT_READY 9 before Iridium call - gathers collected data
XMIT_COMPLETE 10 after Iridium call - transfers control files
RECOVERY 11 every recovery cycle
PREDIVELOG 12 not used by scicon
POSTDIVELOG 13 collect data for log file
BOOT 14
LAUNCH 15 cleans up filesystem (deletes old data)
SELFTEST 16
PRE_SELFTEST 17 not used by scicon
SAMPLE_DEPTH 18 new depth data available, report CT data if available
SAMPLE_STATUS 19 check for change of profile or depth based controls
DIAGNOSE_POWER 20
SEALEVEL 21 latch sealevel value for pressure sensors
MOTORS_ON 22 not used by scicon
MOTORS_OFF 23 not used by scicon
SURFACE 24

Table 4.1: Available action points and their assigned number for messages that can be sent
from Seaglider to scicon.

18

Chapter 5

Selftest results

The autonomous selftest function of the glider menu (launch/autotest) runs a series of
diagnostic commands on scicon, results of which are reported in the selftest capture file.
Many of these report on the basic functionality of the scicon hardware (real-time clock,
oscillator speeds, fuel gauge configuration, firmware version). Selftest results also include
the current instrument, attachment, and scheme files as parsed by scicon, a data sample
from each instrument, e.g.,

--checking ct legatoPoll
ct: -0.001 21.928 9.876 21.945
avg mA=10.17, J=2.5
--checking wl wlbb2flvmt
wl: 54.000 60.000 70.000 537.000
avg mA=45.69, J=1.4
--checking optode aa4831
optode: 256.757 93.949 21.939 28.929 30.992
avg mA=40.53, J=0.7

and metadata from each instrument (if meta= is defined in scicon.ins). These latter two are
particularly important to review to verify correct instrument operation and configuration.

These test results can be viewed either by direct reading of the selftest capture file (ptGGGNNNN.cap)
or using either the command line (selftest.sh) or visualization server (/selftest/GGG) based
selftest viewers that are part of the basestation. The latter provide more formatting and
error highlighting for easier readability.

19

Chapter 6

File formats and basestation handling

Scicon creates a directory for every profile, with separate files for each sensor inside the
directory. Directory names are in the form scNNNNp where NNNN is the dive number and
p is the profile indicator (a=dive, b=climb). Loiter data is included as part of the climb.
At the end of each dive, the glider transfers a gzipped tarball of each of these directories
from scicon to its own filesystem and then during the Iridium call uploads these files to the
basestation.

The format of individual data files within the directories is similar to the glider’s own en-
gineering file. Header and footer lines are marked with %. Data lines are represented as
the sample-to-sample difference written in plan ASCII text. The first column is always the
elapsed time in milliseconds from the start of sampling. Filenames are “instanceName.dat”
for each instrument within the directory. If there is any data reduction or manipulation spec-
ified (averaging, decimation, dropping or adding of columns) then the raw data is written
into “instanceName.dao” and the changed data for telemetry written into the .dat file.

6.0.1 .dat example

As an example, this is the beginning and ending of a file from a legatoPoll CTD attached with
the instance name “ct” for a dive profile. The header lines indicate that the pressure sensor
latched 10240 as the pressure at launch when the glider sent the “log sealevel” command, that
this file belongs in the directory sc0030a (which gives both dive number and dive direction),
column names and how they are scaled, and that sampling for this file started at 06-June-
2023 at 16:39:58.346 UT.

% instrument: ct legatoPoll
% sealevel: 10240
% columns: elapsed_t(1,0) conduc(10000,0) temp(10000,0) pressure(1000,0) conducTemp(10000,0)
% container: sc0030a
% comment: SG236
% start: 6 6 123 16 39 58 346
9367 381421 136429 10308 130109

20

CHAPTER 6. FILE FORMATS AND BASESTATION HANDLING

1129 414 -107 197 0
5012 40 167 88 87
4994 57 43 137 130
...
20000 7 2 275 27
20000 -41 -49 289 -27
% stop: 6 6 123 19 46 35.437
% finish: powerexternal used = 4.135e+000
% samples: 830
% ontime: 5803704

Trailer lines indicate how many samples were recorded during this profile, the total powered
on time in milliseconds, and for this instrument (because there is a stop command defined
in the .ins file), the results of that command in the “finish” line. For a Legato CTD, the
“powerexternal used” command returns the energy used in Joules.

Scicon does real-time fuel gauging at the whole board level, not per instrument. The glider
uses the fuel gauge results in its power modeling for battery consumption, but there is no per
instrument breakdown. The average current consumption over the entire dive is reported in
$SENSOR_MAMPS in the log file. Per instrument power usage can be deduced by looking at the
samples count and ontime in the trailers of individual files as above along with knowledge
of the energy per sample of a given instrument. Some instruments (Legato CTD, Nortek
AD2CP) can provide their own usage numbers (either measured or modeled). Selftest results
include the results of the “log test” command which include average current and Joules used
during the test. This can be a good indicator of per sample current consumption, but be
aware that these single sample numbers may not be representative for instruments with a
long warmup-time, that stay on between samples, or with a shutdown procedure, as with a
a typically configured Legato CTD for example.

6.0.2 .eng example

After uploading and unpacking the tarballs, the basestation converts the .dat files into .eng
files named pscGGGNNNN_class_instance.eng where GGG is the glider number, NNNN is
dive number, p is profile (a or b) and class and instance are as defined in the .ins file (class)
and .att file (instance). Header and trailer lines are copied through. Data lines are summed
to remove differencing and have scale and offset applied. Column 1 is now absolute epoch
time in seconds.

%instrument: ct legatoPoll
%sealevel: 10240
%columns: legatoPoll.time legatoPoll.conduc legatoPoll.temp legatoPoll.pressure legatoPoll.conducTemp
%container: sc0030a
%comment: SG236
%start: 6 6 123 16 39 58 346
1686069607.713 38.142 13.643 0.068 13.011
1686069608.842 38.184 13.632 0.265 13.011

21

CHAPTER 6. FILE FORMATS AND BASESTATION HANDLING

1686069613.854 38.188 13.649 0.353 13.020
1686069618.848 38.193 13.653 0.490 13.033
...
1686080757.271 32.197 3.621 994.448 3.747
1686080777.271 32.193 3.616 994.737 3.744
%stop: 6 6 123 19 46 35.437
%finish: powerexternal used = 4.135e+000
%samples: 830
%ontime: 5803704
%timeouts: 0
%errors: 0

22

Chapter 7

Firmware commands

Beyond use as the glider science controller, the scicon board is a powerful general purpose
data logger. When in direct communications with scicon or via the “command” menu options,
the following commands are available at the scicon > command prompt. Only a small subset
of these are used by the glider during normal operations.

attach [filename] show/read attachments
scheme [filename] show/read sample scheme file
prop [filename] show/read property file
detach instrument remove instrument

log start DEPTH dirname [comment] start logging
log stop stop logging
log finish stop loggging and tar files
log inst report data from all attached - single line
log fetch report data from all attached - verbose
log test report data and power from all attached
log sample NAME1 NAME2 ... [DEPTH] report latest from NAMEs
log count NAME report count from NAME
log power NAME report power draw from NAME
log meta report metadata from attached
log scheme PROFILE(a|b|c) DIVE change scheme
log sealevel record sealevel from pressure sensors
log single NAME sample only NAME while logging
log all restore sampling of all attached

script scriptfilename execute commands in script
source scriptfilename execute commands in script without complaint

if missing
oneshot scriptfilename exec then delete script

pdos YES reboot with suspended WD

23

CHAPTER 7. FIRMWARE COMMANDS

quit reboot

time command args measure execution time of command
repeat N command args loop repeat command N times
print string1 string2...[>|» dest] echo string(s) to console or file

ver [long] [set] program version information

sysclk show clock speed
sysclk N [hse] set system clock speed
hscal [N] calibrate system clock
rtcclk show RTC config

baud N set console baud rate
echo on|off turn console echo on or off

fgwd calibrate calibrate FG slope/offset
fgwd wd show wd value
fgwd wd N set wd value to N
fgwd volts read battery voltage
fgwd current read instantaneous current draw
fgwd read read accumulators
fgwd clock reconfigure wd clocks
fgwd save save wd value to NVRAM
fgwd clear clears accumulators
fgwd temp read MSP430 internal temp
fgwd vlo calibrate vlo
fgwd fire fire wd (reset)
fgwd offset OFFSET SLOPE set FG slope and offset
fgwd zero zero FG offset
fgwd config read configuration
fgwd ad read AD rate register
fgwd ad N write N to AD rate register
fgwd register X n read n-byte value at reg X
fgwd write X n write n-byte value at reg X
fgwd reboots report watchdog reboot count

batt read RTC batt voltage

vee clear re-init VEE header
vee clear N re-init end pointer to N
vee format zero out VEE
vee read string|float|long|byte var read var from VEE
vee write string|float|long|byte var value write var to VEE

24

CHAPTER 7. FIRMWARE COMMANDS

flash status read protection status
flash protect on|off iap|app change protection status
flash boot iap.bin flash write IAP region

xr filename receive file via xmodem
xs filename [N] xmodem send file
cat filespec [>|» dest] cat file(s) to console or file
rr filename raw receive file
rs filename raw send file
firmware filename md5sig xr receive file for firmware
ys filespec [path] ymodem send file(s)

service N service logging loop for N sec

compass init [calfile] init auxp compass
compass coeff report compass coefficients
compass raw stream raw compass results
compass cal stream cal compass results
compass calibrate collect attitude cal data

dir root directory contents
dir filespec dir with globbing
dir filespec dirname dir in dirname with globbing
dirfile capname root dir saved to capname
dirfile capname filespec glob results saved to capname
dirfile capname filespec dirname glob results to capname
del filespec delete in root dir (recurses)
del filespec dirname delete in dir
gzip filename gzipname compress file
gunzip gzipname filename uncompress file
md5 filename compute md5 checksum
cp src dest [size] [start] copy file
ren src dest rename file
mkdir dirname make directory
filesdirs report file and dir count
trunc filespec len truncate file to len bytes
tar t|c|x[vz] tarname filespec dir create tarball
vi filename edit filename with vi

stream instrument stream data direct from inst
term N [addlf] [stroke] [script file] direct terminal port N
power N 0|1 power control port N
power report power state of all ports
gpio read Xnn read state gpio port X, pin nn
gpio set Xnn set bit gpio port X, pin nn

25

CHAPTER 7. FIRMWARE COMMANDS

gpio reset Xnn clear bit gpio port X, pin nn
freq N [1|2] [cyc] [samples] frequency count port N

cardinfo [long] report SD card info
mem report malloc stats

sleep N low-power sleep N seconds
sleep_ms N low-power sleep N millisec
delay N busy wait N millisec

clock read RTC
clock HH:MM:SS set RTC time
clock MM/DD/YYYY HH:MM:SS set RTC date and time
epoch report epoch time
epoch N set epoch time

launch pre-mission setup and house cleaning

26

	Introduction
	Hardware and wiring
	Configuration
	scicon.ins
	example
	syntax
	format statements
	columns
	string commands

	scicon.att
	example
	syntax
	expressions

	scicon.sch
	example
	syntax

	Parameters

	Glider menu controls
	action numbers

	Selftest results
	File formats and basestation handling
	.dat example
	.eng example

	Firmware commands

